WORKSHOP

PRO 28 Rev. 3 - Allegato 2e

Numero: 2019/0XX-APT Ed. n. 1 del 15/11/2019

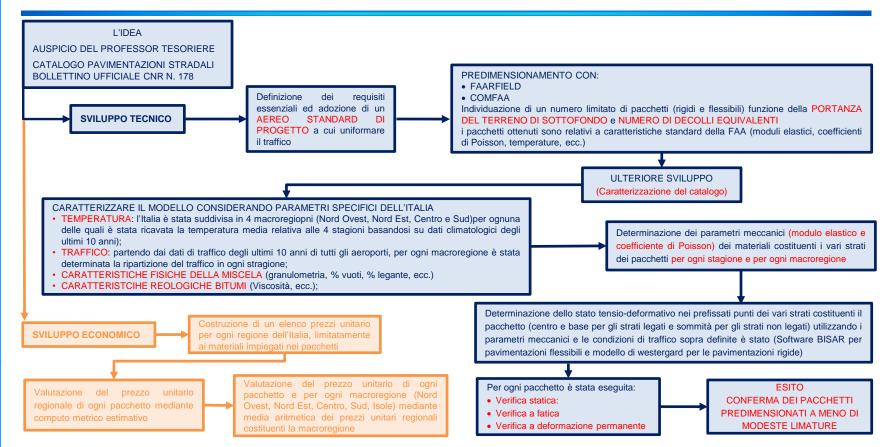
dimostratione di rispondienza di requititi normativi. Sono generalmente associate a Circolati. Dato il loro carattere non Interessato spedie di seguire le Indicatori fornite nelle LG, ne appetta espilatamente le implicationi sui proprio impianto organizzativo da esse come fisultante ed esprime il proprio forte impegno a mantenersi aderente ad esse al fini della confinua rispondenza di requisito normativo interessato. Il destinatari sono invitati ad assicurare che le presenti Linee Guida

CATALOGO DELLE PAVIMENTAZIONI **AEROPORTUALI**

DIREZIONE PIANIFICAZIONE E PROGETTI

EMESSA DALLA DIREZIONE CENTRALE VIGILANZA TECNICA Direttore: Dott. Roberto Vergari

CATALOGO DELLE PAVIMENTAZIONI AEROPORTUALI


ING. EUGENIO DI MARO

FINE PAZZANE PER LANGORE GALE TITALIAN CAR ANATOR AUTHORITY

Cosa vedremo

- L'IDEA
- LO SVILUPPO TECNICO
- LO SVILUPPO ECONOMICO
- I CONTENUTI
- ESEMPIO DI UTILIZZO
- CONCLUSIONI

Cosa vedremo

L'IDEA

Il professore Giuseppe TESORIERE già dal 1993 auspicava, nel volume tre della collana «Strade Ferrovie ed Aeroporti», l'elaborazione di un catalogo delle "piste aeroportuali".

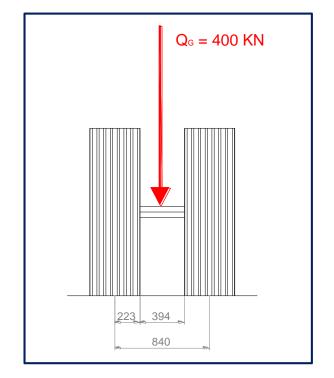
Bollettino Ufficiale CNR n. 178 del 15/09/1995 - Catalogo delle pavimentazioni stradali

REQUISITI ESSENZIALI

RESISTENZA MECCANICA

PORTANZA

ECONOMICITA'

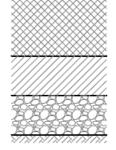

ENTERNATION AUTHORITY

LO SVILUPPO TECNICO

L'AEREO STANDARD DI PROGETTO

Si tratta di un aeromobile avente il carrello principale costituito da due gambe di forza con ruote gemelle.

Sul carrello principale grava un peso massimo di 800 KN (di conseguenza su ogni ruota gravano 200 KN) e gli pneumatici presentano una pressione di gonfiaggio di 1,28 MPa

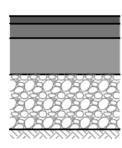

PREDIMENSIONAMENTO

COMPOSIZIONE DEL PACCHETTO

PAVIMENTAZIONI RIGIDE

LASTRA IN CLS

M.C. o M.C. + M.G.S.


PAVIMENTAZIONI FLESSIBILI

USURA IN CLB

BINDER IN CLB

BASE IN CLB

FONDAZIONE IN M.C. e/o M.G.S.

AUTORE ING. E. DI MARO

PREDIMENSIONAMENTO

DATI DI INPUT

PAVIMENTAZIONI RIGIDE

- NUMERO ANNUO DI DECOLLI DELL'AEREO DI RIFERIMENTO
- VITA UTILE
- PORTANZA SOTTOFONDO
- RESISTENZA CLS

PAVIMENTAZIONI FLESSIBILI

- NUMERO ANNUO DI DECOLLI DELL'AEREO DI RIFERIMENTO
- VITA UTILE
- PORTANZA SOTTOFONDO

VERIFICA ACN/PCN

LO SVILUPPO TECNICO

PREDIMENSIONAMENTO

METODOLOGIE UTILIZZATE

FAARFIELD

Algoritmo di cui alla circolare FAA 150/5335-5C "Standardized of Reporting Method Airport Pavement Strength - PCN"

I pacchetti ottenuti sono relativi a caratteristiche standard della FAA (moduli elastici, coefficienti di Poisson, temperature, ecc.)

L'ULTERIORE SVILUPPO

Particolarizzazione di:

- caratteristiche fisiche dei materiali impiegati per la progettazione delle sovrastrutture
- condizioni ambientali e di traffico alle condizioni tipiche dell'Italia

Determinazione delle caratteristiche meccaniche dei materiali impiegati

Verifica razionale delle sovrastrutture predimensionate

Ispirato all'algoritmo proposto nella documento UFC 3-260-02 del Dipartimento della Difesa Americana

FINE NAZOVAL PSE LANAZOVE COAL

LO SVILUPPO TECNICO

L'ULTERIORE SVILUPPO

PARTICOLARIZZAZIONE DEI PARAMETRI SPECIFICI

PAVIMENTAZIONI FLESSIBILI

- Temperatura
- Frequenza di applicazione del carico
- Fusi granulometrici
- Contenuto di legante
- Percentuale dei vuoti
- Viscosità del bitume
- Resistenze meccaniche materiali

PAVIMENTAZIONI RIGIDE

- Temperatura
- Resistenze meccaniche materiali

L'ULTERIORE SVILUPPO

DETERMINAZIONE DEI PARAMETRI MECCANICI

PAVIMENTAZIONI FLESSIBILI

- Temperatura
- Frequenza di applicazione carico
- Fusi granulometrici
- Contenuto di legante
- Percentuale dei vuoti
- Resistenze meccaniche materiali

- Correlazioni empiriche Moduli Complessi clb
 - Coefficienti di Poisson clb
- Correlazioni empiriche Modulo elastico MC
 - Resistenza a trazione per flessione MC

PAVIMENTAZIONI RIGIDE

Temperatura

AUTORE ING. E. DI MARO

Resistenze meccaniche materiali

Verifica a fatica Verifica di resistenza

Moduli Elastici

Resistenza a trazione per flessione 12

Correlazioni

L'ULTERIORE SVILUPPO

DETERMINAZIONE DELLO STATO TENSIO-DEFORMATIVO

PAVIMENTAZIONI FLESSIBILI

Mediante il software BISAR della SHELL basato sulla teoria del multistrato elastico

- Tensioni e deformazioni al centro ed alla base degli strati legati con bitume
- Tensioni e deformazioni in sommità degli strati legati a cemento e non legati
- Tensioni e deformazioni in sommità del sottofondo

PAVIMENTAZIONI RIGIDE

Mediante le teorie del Westergaard e del Burmister

- Tensioni e deformazioni in punti specifici delle lastre in cls (centro, bordo e spigolo)
- Tensioni e deformazioni in sommità degli strati legati a cemento e non legati
- Tensioni e deformazioni in sommità del sottofondo

L'ULTERIORE SVILUPPO

VERIFICHE RAZIONALI CONDOTTE

PAVIMENTAZIONI FLESSIBILI

- Verifiche di resistenza
- Verifiche a fatica (mediante relazioni empiriche proposte dalla Shell)
- Verifiche a deformazione permanente

PAVIMENTAZIONI RIGIDE

- Verifiche di resistenza (relazioni della scienza delle usuali costruzioni)
- Verifiche a fatica (relazioni usuali della scienza delle costruzioni)

L'ULTERIORE SVILUPPO

ESITI DELLE VERIFICHE

CONFERMA DEI PACCHETTI
PREDIMENSIONATI A MENO DI
MODESTE LIMATURE

LO SVILUPPO ECONOMICO

- Suddivisione dell'Italia nelle 5 macroregioni
 - Nord Ovest: (Liguria, Lombardia, Piemonte e Valle d'Aosta);
 - Nord Est: (Emilia Romagna, Friuli Venezia Giulia, Trentino Alto Adige e Veneto);
 - Centro: (Lazio, Marche, Toscana e Umbria);
 - Sud: (Abruzzo, Basilicata, Calabria, Campania, Molise e Puglia);
 - Isole: (Sardegna e Sicilia).
- Per ciascuna macroregione e per ciascuno dei materiali impiegati per le sovrastrutture, determinazione del prezzo unitario quale media dei costi derivanti dai Prezzari Regionali o dalle Camere di Commercio.
- Determinazione del costo unitario medio di ogni singolo pacchetto mediante computo metrico estimativo

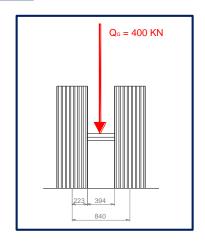
SINE NAZONALE PER L'ANAZONE GALE

I CONTENUTI

Il catalogo delle pavimentazioni aeroportuali si articola in:

- a) FATTORI DEL DIMENSIONAMENTO
 - TRAFFICO
 - CARATTERISTICHE MECCANICHE DEI TERRENI DI SOTTOFONDO
 - CONDIZIONI CLIMATICHE
- b) CARATTERISTICHE DEI MATERIALI
- c) SCHEDE DI CATALOGO
- d) COSTO PARAMETRICO

I CONTENUTI


FATTORI DI DIMENSIONAMENTO

TRAFFICO: Il Catalogo è organizzato per 10 livelli di traffico contraddistinti dal numero di decolli equivalenti dello "aeromobile di progetto" avente il carrello principale costituito da due gambe di forza con ruote gemelle. Sul carrello principale grava un peso massimo di 800 KN (di conseguenza su ogni ruota gravano 200 KN) e gli pneumatici presentano una pressione di gonfiaggio di 1,28 MPa.

Nel catalogo è inoltre presente la stima della ripartizione del traffico medio stagionale tra le tre differenti macroregioni (Nord, Centro e Sud) derivante da un'analisi dei dati di traffico dell'ultimo decennio, utilizzata per la verifica razionale delle pavimentazioni flessibili.

Stagione	Nord	Centro	Sud
Primavera	25,0%	25,0%	22,7%
Estate	28,6%	29,3%	35,8%
Autunno	25,4%	25,3%	24,6%
Inverno	21,0%	20,4%	16,9%

Tabella 3.1 - Movimenti medi stagionali

18

I CONTENUTI

FATTORI DI DIMENSIONAMENTO

CARATTERISTICHE MECCANICHE DEI TERRENI DI SOTTOFONDO: Il parametro scelto per caratterizzare la portanza del sottofondo è il CBR per le pavimentazioni flessibili, ed il Modulo di Reazione K per le pavimentazioni rigide.

In assenza di indagini specifiche, i citati parametri possono essere correlati tra loro ed al modulo elastico del terreno di sottofondo mediante le relazioni a lato

$$E_0 = 0.74 \cdot K^{1,284}$$

$$E_0 = 10,342 \cdot CBR$$
$$K = 8 \cdot CBR^{0,7788}$$

$$K = 8 \cdot CBR^{0,7788}$$

ENAC ATT FINE NATION OF THE PROPERTY OF THE P

I CONTENUTI

FATTORI DI DIMENSIONAMENTO

CONDIZIONI CLIMATICHE: Per le pavimentazioni flessibili e semirigide, tenuto conto che il conglomerato bituminoso è un materiale che presenta caratteristiche meccaniche diverse in relazione alla temperatura, si è fatto riferimento a situazioni climatiche medie che si verificano in Italia. A tal fine, il territorio Italiano è stato suddiviso in tre differenti macroregioni (NORD, CENTRO e SUD) e per ciascuna macroregione sono state definite (mediante un'analisi dei dati disponibili sul sito internet de Il Meteo) le temperature medie stagionali come riportato nella successiva tabella

	Nord	Centro	Sud
Primavera	14,4	14,5	16,0
Estate	24,2	24,4	25,6
Autunno	14,9	16,7	19,4
Inverno	5,1	8,4	11,3

Per le pavimentazioni rigide si è, invece, fatto riferimento alle condizioni climatiche dell'Italia Settentrionale per tener conto della maggiore sensibilità di questo tipo di sovrastruttura ai valori massimi di sollecitazione.

ENE NAZONALE PER LANAZONE GALE

I CONTENUTI

CARATTERISTICHE DEI MATERIALI IMPIEGATI

PER IL LEGANTE BITUMINOSO:

- Penetrazione a 25 °C
- Punto di rammollimento
- Punto di rottura Frassi
- Ritorno elastico a 25 °C
- Solubilità
- Stabilità allo stoccaggio tube test
- Viscosità dinamica a 160 °C
- Penetrazione residua a 25 °C
- Incremento del punto di rammollimento

PER IL LEGANTE CEMENTIZIO:

Tipo di Cemento

PARAMETRO	NORMATIVA	UNITA' DI	VALORE	
PARAMETRO	NORWATIVA	MISURA	50/70	70/100
Penetrazione a 25 °C	UNI EN1426	dmm	50 – 70	70 – 100
Punto di rammollimento	UNI EN1427	°C	45 – 60	40 – 60
Punto di rottura Frass	UNI EN12593	°C	≤-6	≤-8
Ritorno elastico a 25 °C		%	-	
Solubilità	UNI EN12592	%	≥ 99	≥ 99
Stabilità allo stoccaggio tube test		°C	-	-
Viscosità dinamica a 160 °C	UNI EN 13072-2	Pa*s	0,03 - 0,1	0,02 - 0,1
Valor	dopo RTFOP - Rolling	Thin Film Ove	n Test	
Penetrazione residua a 25 °C	UNI EN1426	%	≥ 40	≥ 50
Incremento del punto di rammollimento	UNI EN1427	°C	≤ 9	≤ 9

Tabella 3.9 - Strato di base, binder ed usura in CLB - Requisiti di accettazione del bitume tradizionale

		UNITA' DI	VALORE			
PARAMETRO	NORMATIVA	MISURA	Base Modificata	SOFT	HARD	
Penetrazione a 25 °C	EN1426	dmm	80 - 100	50 - 70	50 – 70	
Punto di rammollimento	EN1427	°C	40 - 60	60 - 80	70 – 90	
Punto di rottura Frass	EN12593	°C	≤-8	≤ - 10	≤ - 12	
Ritorno elastico a 25 °C		%	-	≥ 70	≥ 80	
Solubilità	EN12592	%		≥ 99	≥ 99	
Stabilità allo stoccaggio tube test		°C	-	≤ 3	≤ 3	
Viscosità dinamica a 160 °C	UNIEN 13302	Pa*s	0,01 - 0,1	0,1 - 0,35	0,15 - 04	
Va	ilori dopo RTFOP – F	Rolling Thin File	n Oven Test			
Penetrazione residua a 25 °C	EN1426	%	≥ 50	≥ 40	≥ 40	
Incremento del punto di rammollimento	EN1427	°C	≤ 9	≤ 8	≤ 5	

Tabella 3.10 - Strato di base, binder ed usura in CLB - Requisiti di accettazione del bitume modificato

I CONTENUTI

CARATTERISTICHE DEI MATERIALI IMPIEGATI

PER GLI INERTI:

- Los Angeles
- Micro Deval Umida
- Quantità di frantumato
- Dimensione max
- Passante al setaccio 0.063
- Contenuto di rocce tenere, alterate o scistose
- Contenuto di rocce degradabili
- Contenuto di rocce solfatiche
- Contenuto di rocce reagenti con alcali del cemento
- Equivalente in sabbia
- · Indice di plasticità
- Limite Liquido

I CONTENUTI

CARATTERISTICHE DEI MATERIALI IMPIEGATI

FRAZIONE	PARAMETRO	NORMATIVA	SIMBOLO	UNITA' DI MISURA	BASE	VALORE BINDER	непра
	Los Angeles	UNI EN 1097-2	LA	%	≤ 25	≤ 25	≤ 20
	Micro Deval Umida	CNR 109/85	Moe	%	≤ 20	≤ 20	≤ 15
	Quantità di frantumato	UNI EN 933-5	С	%	≥ 90 ³	100	100
	Sensibilità al gelo	CNR 80/80	G	%	≤ 30	≤ 30	≤ 30
	Spogliamento in acqua a 40 °C	CNR 138/92		%	≤ 5	≤ 5	0
	Passante al setaccio 0,063	CNR 75/80	f	%	≤ 1	≤1	≤ 1
	Coefficiente di appiattimento	UNI EN 933-3	FI	%	≤ 15	≤ 15	≤ 15
	Porosità Resistenza alla	CNR 65/78		%		≤ 1,5	≤ 1,5
GROSSA	Resistenza alla levigatezza CLA Perdita di tenacità	EN 1097-8	LV		-		≥ 44
	al solfato di sodio dopo 5 cicli	ASTM C88		%	10	10	10
	Perdita di tenacità al solfato di magnesio dopo 5 cicli	ASTM C88 UNI	MS	%	13 18	13 18	13 18
	Contenuto di rocce tenere, alterate o scistose;	CNR 108/84		%	s 1	s1	≤1
	Contenuto di rocce degradabili	CNR 104/84		%	≤ 1	≤ 1	≤ 1
	Los Angeles	UNI EN 1097-2	LA	%	≤ 25	≤ 25	≤ 25
	Equivalente in sabbia	UNI EN 933-8	ES	%	≥ 60	≥ 60	≥ 75
	Indice Plasticità	CNR-UNI 10014	IP	%	NP	≤6	≤6
	Limite Liquido	CNR-UNI 10014	WL	%	≤25	≤25	≤25
FINE	Passante al setaccio 0,063	UNI EN 933-1	f	%	≤18	≤18	≤18
	Quantità di frantumato	CNR 109/85		%		≥40	≥70
	Contenuto di rocce tenere, alterate o scistose	CNR 104/84		%	≤1		
	Contenuto di rocce degradabili	CNR 104/84		%	≤1	-	
	Spogliamento in acqua	CNR 138/92		%		≤ 5	≤ 5
	Passante al setaccio 0,125	UNI EN 933-10		%	≥85	≥85	≥85
FILLER	Passante al setaccio 0,063	UNI EN 933-10		%	≥70	≥ 70	≥ 70
	Indice di plasticità	UNI CEN ISO/TS 1789-12	IP		NP	NP	NP
	Vuoti Rigden	UNI	V	%		28-45	28-45
	Potere rigid.	CNR122/88	DPA	°C		Vedi tab. succ.	Vedi tab. succ.

Tabella 3.7 - Strato di base, binder ed usura in CLB - Requisiti di accettazione degli aggregati

FRAZIONE	PARAMETRO	NORMATIVA	SIMBOLO	UNITA' DI MISURA	VALORE
	Los Angeles	CNR 34/73	LA	%	≤ 30
	Micro Deval Umida	CNR 109/85	MDU	%	≤ 25
	Quantità di frantumato			%	≥ 40
	Dimensione max	CNR 23/71	D _{MAX}	mm	30
	Sensibilità al gelo	CNR 80/80		%	≤ 30
	Passante al setaccio 0.063	CNR 75/80		%	≤1
GROSSA	Perdita di tenacità al solfato di sodio	ASTM C88		%	10
	Perdita di tenacità al solfato di magnesio	ASTM C88		%	13
	Contenuto di rocce tenere, alterate o scistose	CNR 104/84		96	≤ 1
	Contenuto di rocce degradabili	CNR 104/84		%	≤ 1
	Contenuto di rocce solfatiche	CNR 104/84		96	≤ 1
	Contenuto di rocce reagenti con alcali del cemento	CNR 104/84		%	≤ 1
	Equivalente in sabbia	CNR 27/72	ES	%	30 - 60
	Indice di plasticità	CNR-UNI 10014	IP	%	NP
FINE	Limite Liquido	CNR-UNI 10014	WL	%	≤25
	Contenuto in ione SO4			%	≤1
	Contenuto di sostanze organiche			%	≤1

Tabella 3.5 - Strato di fondazione in MC - Requisiti di accettazione degli aggregati

FRAZIONE	PARAMETRO	SIMBOLO	NORMA	Unità di misura	VALORE
	Quantità di frantumato			%	100²
	Coefficiente LOS ANGELES	LA	UNI EN 1097/2	%	≤ 30
	Dimensione Massima	D _{MAX}	UNI EN 933/1	mm	≤ 63
GROSSA	Sensibilità al gelo	G	CNR 80/80	%	≤ 20
	Elementi piatti o allungati		ASTM D 693	%	0
	La perdita di tenacità al solfato di sodio dopo 5 cicli		ASTM C 88	%	≤ 12
	Indice di plasticità	IP	CNR-UNI 10014	%	NP
FINE	Limite liquido	WL	CNR-UNI 10014	%	≤ 25
FINE	Equivalente in sabbia	ES	CNR 27/72	%	≤ 35
	Passante al setaccio 0,063 mm		CNR 75/80	%	≤ 6

Tabella 3.3 - Strato di fondazione in MGS - Requisiti di accettazione degli aggregati

ENE NAZIONALE PES L'ANAZIONE GALE FINE NAZIONE FINE NAZIONE GALE FINE NAZIONE FINE NAZI

I CONTENUTI

CARATTERISTICHE DEI MATERIALI IMPIEGATI

PER LA MISCELA:

- Assortimento granulometrico
- Contenuto di legante (per gli strati legati)
- Resistenza a compressione
- Resistenza a trazione indiretta a 25 °C
- Coefficiente di trazione indiretta a 25 °C
- Costipamento
- Stabilità
- Rigidezza
- Vuoti residui
- Perdita di stabilità dopo 15 gg di immersione in acqua
- Classe di resistenza
- Classe di esposizione ambientale
- Lavorabilità
- Dosaggio di cemento
- Dimensione massima dell'aggregato
- Il rapporto acqua-cemento (a/c)

· Per tutti i materiali

Per i conglomerati bituminosi

Per i conglomerati cementizi

ENE NAZONALE POR LANAZONE GALE

I CONTENUTI

CARATTERISTICHE DEI MATERIALI IMPIEGATI

Dimensione Setaccio	Passante (%)
63	100
40	84-100
20	70-92
14	60-85
8	46-72
4	30-56
2	24-44
0,25	8-20
0,063	6-12

Tabella 3.4 - Fuso granulometrico MGS

Dimensioni aggregato (mm)	Passante (%)
8	100
4 mm	90 - 100
2 mm	65 - 90
1 mm	45 - 75
0,5 mm	22 - 46
0,25 mm	7 - 25
0,125 mm	0-5

Tabella 3.15 - Fuso granulometrico Calcestruzzo

Dimensioni aggregato	Passante (%)
40 mm	100
31,5 mm	90 - 100
20 mm	70 - 90
14 mm	58 - 78
8 mm	43 - 61
4 mm	28 - 44
2 mm	18 - 32
0,5 mm	9 - 20
0,125 mm	6 - 13
0,063 mm	5 - 10

Tabella 3.6 - Fuso granulometrico Misto Cementato

Ba	se	Bin	der	Use	ura
D Aggregato (mm)	% passante	D Aggregato (mm)	% passante	D Aggregato (mm)	% passante
45	100	31,5	100		
31,5	87 - 100	22,4	90 - 100	16	100
22,4	72 - 90	16	78 - 94	12,5	90 - 100
16	55 - 78	12,5	66 - 86	8	70 - 88
8	36 - 60	8	52 - 72	4	40 - 58
4	25 - 48	4	34 - 54	2	25 - 38
2	18 - 38	2	25 - 40	0,5	10 - 20
0,5	8 - 21	0,5	10 - 22	0,25	8 - 16
0,25	5 - 16	0,25	6 - 16	0,063	6 - 10
0.063	4 - 8	0,063	4 - 8		
		Percentual	e di bitume		
	3,8 - 5,2		4,1 - 5,5		4,5 - 6,1

Tabella 3.11 – Fusi granulometrici

ENE NAZONALE POR LANAZONE GALE

I CONTENUTI

CARATTERISTICHE DEI MATERIALI IMPIEGATI

TEST	Unità di misura	BASE	BINDER	USURA
Costipamento	n. colpi	75	75	75
Stabilità	KN	>8	>10	>11
Rigidezza	KN/mm	>2,5	3 - 4,5	3 - 4,5
Vuoti residui	%	4-7	4-6	3-6
Perdita di stabilità dopo 15 gg di immersione in acqua	%	≤25	≤25	≤25
Resistenza a trazione indiretta a 25 °C	N/mm2			>0,7
Coefficiente di trazione indiretta a 25 °C	N/mm2			>70

TEST	Unità di misura	BASE	BINDER	USURA
Costipamento	n. colpi	75	75	75
Stabilità	KN	>9	>11	>12
Rigidezza	KN/mm	2,5 - 4,0	3 - 4,5	3,5 - 5
Vuoti residui	%	6-8	4-6	3-5
Perdita di stabilità dopo 15 gg di immersione in acqua	%	≤25	≤25	≤25
Resistenza a trazione indiretta a 25 °C	N/mm2			>0,7
Coefficiente di trazione indiretta a 25 °C	N/mm2			>70

Tabella 3.12 - Conglomerati bituminosi tradizionali - parametri Marshall di progetto

Tabella 3.13 - Conglomerati con bitume modificato - parametri Marshall di progetto

Condizioni di prova											
Parametro	l e	BASE		BINDER		USURA					
Pressione verticale (kPa)	600		600		600						
Angolo di rotazione	1,25	° ± 0,02		1,25	° ± 0,02		1,25	° ± 0,02		%	
Velocità di rotazione (giri/min)		30	30 3		30		30		30		VUOTI
Diametro provino (mm)		150	100		100			1 1			
Bitume	TQ	SF	HD	TQ	SF	HD	TQ	SF	HD		
N. giri N1	10	10	10	10	10	10	10	10	10	11 - 15	
N. giri N2	100	110	120	100	110	120	120	130	140	3-6	
N. giri N3	180	190	200	180	190	200	210	220	230	>2	
		Caratte	ristiche	meccaniche							
Resistenza a trazione indiretta a 25 °C (N/mm²) (*)	0,72 - 1,4	0,95 -	- 1,70	0,72 - 1,4	0,95 -	- 1,70	0,72 - 1,4	0,95 -	- 1,70		
Coefficiente di trazione indiretta a 25 °C (N/mm²) (¹)	≥65	2	75	≥65	2	75	≥65	2	75		
(*) Provini compattai ad N3											

Tabella 3.14 - Conglomerati bituminosi - parametri volumetrici di progetto

I CONTENUTI

LE SCHEDE DI CATALOGO

NUMERO MOVIMENTI		POI	RTANZA SOTTOFONE	10	
EUIVALENTI	K = 70	K = 80	K = 90	K = 100	K = 110
N±43.80B	37 37 + 30 30 1	75 27 27 1	37 37 4 26 1	1 35 + 30 + 25 × 1	33 1 30 1
	27	28	28	30	31
43 000÷N::87 600	30 30 4 4 4 4 7 7 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9	37 37 30 30 4 20 20 20 20 20	37 1 37 1	37 37 1 1 25 1	31 31 25 4
	25	25	27	28	28
87 640-th±175.200	40	440 ↓ 20 +	37 37 30 30 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 37 4 30 4 4 4 65 6 5 7 6 20	37 37 30 30 30
	23	23	24	25	27
175.290÷N≤350.400	40	40 40 30	40 +1 -25 -1	40 +0 + + 25 ±	40 20 1 7 7 7 8 7 7 7 7 1
	[21	[21	22	22	23
360.480×N± 525.600	40 + 1 30 + 20 + 20	40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	40 	1 40 40 1 25 1	40 40 1
	18	18	21	22	2

NUMERO		PO	RTANZA SOTTOFONO	ю	
MOVIMENTI EUIVALENTI	CBR < 5	CBR = 5	CBR = 6	CBR = 8	CBR = 10
Ns-43.800	SOTTOPONDO NON ADEQUATO AL TIPO ED ENTITA DI TRAFFICO (PREVEDERE BONIPICA)	######################################		18181	# # # # # # # # # # # # # # # # # # #
		7	9	12	15
43.800+Na175.200	SOTTOPONDO NON ADEGUATO AL TIPO ED ENTITA: DI TRAFFICO (PREVEDERE BONIFICA)	1000	10-8-8	#+0+a	*******
		5	8	12	13
175.200+N±350.400	SOTTOPONDO NON ADEQUATO AL TIPO ED ENTITA DI TRAFFICO (PREVEDERE BONIPICA)	######################################	######################################	######################################	**************************************
		4	7	11	13
350,400-942525,900	SOTTOPONDO NON ADEQUATO AL TIPO EO ENTITA DI TRAFFICIO (PREVEDERE BONIFICA)	0	HO1-8-1-8-1		300000 P
		3	7	11	12
525.800+h <u>u</u> 708.400	SOTTOPONDO NON ADEGUATO AL TIPO ED ENTITA DI TRAFFICO (PREVEDERE BONIFICA)	######################################		######################################	1000000
		2	7	11	12

ENACE NAZONAE PED LAWAZOFE ON STATEMENT OF A PARTIES AND THE STATEMENT OF THE STATEMENT OF

FOTE PAZZOVE DES L'AMAZON COME Industra Con Amazon Come

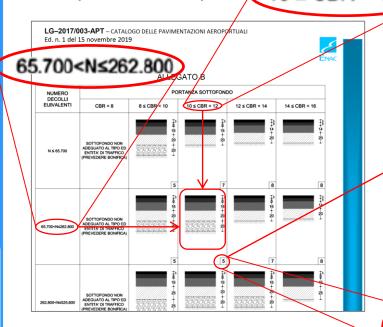
I CONTENUTI

I COSTI PARAMTRICI

Pacchetto	Spessore	PAVIMENTAZIONI RIGIDE COSTO €						
	(cm)	NORD-OVEST	NORD -EST	CENTRO	SUD	ISOLE		
Pacchetto 1	83	€ 109,00	€ 127,00	€ 129,00	€ 100,00	€ 137,00		
Pacchetto 2	102	€ 116,00	€ 133,00	€ 137,00	€ 105,00	€ 149,00		
Pacchetto 3	100	€ 112,00	€ 129,00	€ 133,00	€ 101,00	€ 145,00		
Pacchetto 4	70	€ 104,00	€ 120,00	€ 122,00	€ 95,00	€ 135,00		
Pacchetto 5	65	€ 101,00	€ 117,00	€ 118,00	€ 93,00	€ 130,00		
Pacchetto 6	60	€ 99,00	€ 114,00	€ 115,00	€ 91,00	€ 125,00		
Pacchetto 7	67	€ 99,00	€ 113,00	€ 116,00	€ 90,00	€ 128,00		
Pacchetto 8	62	€ 96,00	€ 110,00	€ 112,00	€ 88,00	€ 123,00		
Pacchetto 9	57	€ 94,00	€ 108,00	€ 109,00	€ 86,00	€ 118,00		
Pacchetto 10	65	€ 95,00	€ 109,00	€ 112,00	€ 87,00	€ 124,00		
Pacchetto 11	60	€ 93,00	€ 106,00	€ 108,00	€ 85,00	€ 119,00		
Pacchetto 12	55	€ 90,00	€ 104,00	€ 105,00	€ 83,00	€ 114,00		
Pacchetto 13	62	€ 90,00	€ 103,00	€ 106,00	€ 82,00	€ 118,00		

I CONTENUTI

I COSTI PARAMTRICI


Pacchetto	Spessore	PAVIMENTAZIONI FLESSIBILI COSTO IN €						
	(cm)	NORD-OVEST	NORD -EST	CENTRO	SUD	ISOLE		
Pacchetto 1	€ 95,0	€ 86,0	€ 92,0	€ 101,0	€ 76,0	€ 112,0		
Pacchetto 2	€ 91,0	€ 86,0	€ 89,0	€ 88,0	€ 84,0	€ 112,0		
Pacchetto 3	€ 89,0	€ 82,0	€ 84,0	€ 84,0	€ 80,0	€ 107,0		
Pacchetto 4	€ 79,0	€ 78,0	€ 80,0	€ 80,0	€ 76,0	€ 101,0		
Pacchetto 5	€ 69,0	€ 75,0	€ 76,0	€ 76,0	€ 73,0	€ 94,0		
Pacchetto 6	€ 54,0	€ 71,0	€ 73,0	€ 72,0	€ 70,0	€ 92,0		
Pacchetto 7	€ 49,0	€ 69,0	€ 71,0	€ 69,0	€ 67,0	€ 87,0		
Pacchetto 8	€ 45,0	€ 61,0	€ 63,0	€ 61,0	€ 60,0	€ 78,0		
Pacchetto 9	€ 55,0	€ 61,0	€ 61,0	€ 61,0	€ 59,0	€ 68,0		
Pacchetto 10	€ 45,0	€ 58,0	€ 59,0	€ 57,0	€ 56,0	€ 65,0		
Pacchetto 11	€ 41,0	€ 52,0	€ 51,0	€ 49,0	€ 49,0	€ 56,0		

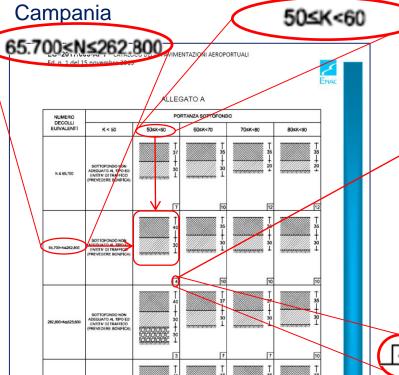
FOR ENCOVAE PSE CANADOR OAK

ESEMPIO DI UTILIZZO

DATI INPUT:

Pavimentazione: Flessibile, decolli equivalenti: 200.000, Portanza: CBR = 11; Aeroporto in Campania 10 ≤ CBR < 12

Pacchetto	Spessore	PA	PAVIMENTAZIONI FLESSIBILI COSTO IN €						
	(cm)	NORD-OVEST	NORD -EST	CENTRO	SUD	ISOLE			
Pacchetto 1	€ 95,0	€ 86,0	€ 92,0	€ 101,0	€ 76,0	€ 112,0			
Pacchetto 2	€ 91,0	€ 86,0	€ 89,0	€ 88,0	€ 8 <mark>4,0</mark>	€ 112,0			
Pacchetto 3	€ 89,0	€ 82,0	€ 84,0	€ 84,0	€ 80,0	€ 107,0			
Pacchetto 4	€ 79,0	€ 78,0	€ 80,0	€ 80,0	€ 76,0	€ 101,0			
Pacchetto 5	€ 69,0	€ 75,0	€ 76,0	€ 76,0	€ 73,0	€ 94,0			
Pacchetto 6	€ 54,0	€71,0	€ 73,0	€ 72,0	€ 70,0	€ 92,0			
Pacchetto 7	€ 49,0	€ 69,0	€ 71,0	€ 69,0	€ 67,0	€ 87,0			
Pacchetto 8	€ 45,0	€ 61,0	€ 63,0	€ 61,0	€ 60,0	€ 78,0			
Pacchetto 9	€ 55,0	€ 61,0	€ 61,0	€ 61,0	€ 59,0	€ 68,0			
Pacchetto 10	€ 45,0	€ 58,0	€ 59,0	€ 57,0	€ 56,0	€ 65,0			
Pacchetto 11	€ 41,0	€ 52,0	€ 51,0	€ 49,0	€ 49,0	€ 56,0			


30

ENTENDACE PER LANADOR GIVE

ESEMPIO DI UTILIZZO

DATI INPUT:

Pavimentazione: Rigida; decolli equivalenti: 200.000; Portanza: K = 50; Aeroporto in

Pacchetto	Spessore	PAVIMENTAZIONI RIGIDE COSTO €					
	(cm)	NORD-OVEST	NORD -EST	CENTRO	SUD	ISOLE	
Pacchetto 1	83	€ 109,00	€ 127,00	€ 129,00	€ 100,00	€ 137,00	
Pacchetto 2	102	€ 116,00	€ 133,00	€ 137,00	€ 105,00	€ 149,00	
Pacchetto 3	100	€ 112,00	€ 129,00	€ 133,00	€ 101,00	€ 145,00	
Pacchetto 4	70	C 104,00	C 120,00	C 122,00	€ 95,00	€ 135,00	
Pacchetto 5	65	€ 101,00	€ 117,00	€ 118,00	€ 93,00	€ 130,00	
Pacchetto 6	60	€ 99,00	€ 114,00	€ 115,00	€ 91,00	€ 125,00	
Pacchetto 7	67	€ 99,00	€ 113,00	€ 116,00	€ 90,00	€ 128,00	
Pacchetto 8	62	€ 96,00	€ 110,00	€ 112,00	€ 88,00	€ 123,00	
Pacchetto 9	57	€ 94,00	€ 108,00	€ 109,00	€ 86,00	€ 118,00	
Pacchetto 10	65	€ 95,00	€ 109,00	€ 112,00	€ 87,00	€ 124,00	
Pacchetto 11	60	€ 93,00	€ 106,00	€ 108,00	€ 85,00	€ 119,00	
Pacchetto 12	55	€ 90,00	€ 104,00	€ 105,00	€ 83,00	€ 114,00	
Pacchetto 13	62	€ 90,00	€ 103,00	€ 106,00	€ 82,00	€ 118,00	

CONCLUSIONI

Vantaggi di un Catalogo delle Pavimentazioni Aeroportuali:

- Con pochi passi è possibile dimensionare tecnicamente ed economicamente una pavimentazione aeroportuale;
- Utile supporto in fase di pianificazione/programmazione dello sviluppo di un aeroporto;
- Utile strumento di standardizzazione della progettazione di infrastrutture aeroportuali;

CONCLUSIONI

ALCUNE CONSIDERAZIONI

- RIGIDEZZA FONDAZIONE IN MISTO CEMENTATO
 Evitare di avere strati in misto cementato molto rigidi soprattutto se la stesa dei neri avviene d'estate
- ADESIONE STRATI IN CLB
 Assicurare una elevata adesione tra gli strati in clb, in modo da garantire un'adeguata trasmissione dello stato tensionale tra gli strati
- TESSITURA SUPERFICIALE CLB Evitare di avere macrotessiture molto accentuate; Elevati valori di macrotessitura superficiale migliorano l'aderenza, per contro aumentano la scabrosità superficiale e quindi il tempo di deflusso delle acque meteoriche dalla piattaforma e creano superfici molto aperte particolarmente sensibili negli ambienti sottoposti frequenti cicli di gelo e disgelo.

CONCLUSIONI

FUTURI SVILUPPI?

Grazie per l'attenzione

